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Abstract
Two-parameter dynamical replica theory (2-DRT) is applied to investigate
retrieval properties of non-monotonic associative memory, a model which
lacks thermodynamic potential functions. 2-DRT reproduces the dynamical
properties of the model quite well, including the capacity and basin of attraction.
The super-retrieval state is also discussed in the framework of 2-DRT. The local
stability condition of the super-retrieval state is given, which provides a better
estimate of the region in which super-retrieval is observed experimentally than
the self-consistent signal-to-noise analysis does.

PACS numbers: 0520, 0230, 8435

1. Introduction

The Hopfield model has attracted the interest of researchers in various fields, and enormous
an amount of studies, both numerical-experimental and theoretical, have been carried out on
it. Of particular interest among them is the one with the model possessing non-monotonic
units [1]: whereas the conventional model uses, as the output function f of a unit, monotonic
functions such as f (x) = tanh βx (β > 0), the model with non-monotonic units, or the
non-monotonic model for short, uses a non-monotonic function. It has been reported that the
non-monotonic model has various nice properties as a model of associative memory. These
include enhancement of storage capacity and enlargement of basins of attraction associated
with retrieval states.

In order to rigorously argue such properties of the non-monotonic model, theoretical
analyses are necessary. However, attempts to analyse the non-monotonic model are often
faced with difficulty because the non-monotonic model in general does not have a Lyapunov
function, which would be a powerful analytical tool for characterizing the equilibrium as well
as dynamical properties of the model. Thus, applicable theories are restricted to what have
been devised for analysing the conventional model and yet are independent of the functional
form of the output function f . As for equilibrium analysis, the self-consistent signal-to-noise
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Figure 1. The non-monotonic function f (x).

analysis (SCSNA) has been applied to the non-monotonic model [2] and some interesting
properties, including the existence of the so-called super-retrieval states, have been found.
For retrieval dynamics, on the other hand, currently no exact and tractable theory is known
even for the conventional model: the path integral formalism [3] and Gardner–Derrida–
Mottishaw theory [4] (for the ‘zero-temperature’, or β → +∞ case) are the exact theories
for the asynchronous (or Glauber) and synchronous (or Little) dynamics, respectively, but
computation of dynamics based on each of them is prohibitively difficult. It has been generally
believed [3,5,6] that any tractable theories on retrieval dynamics necessarily incorporate some
approximation. For the conventional model with the synchronous dynamics, Amari–Maginu
theory [7] (for the zero-temperature case; for extension to the finite-temperature case, see [8])
has been proposed as one such theory, and Nishimori and Opriş [9] have applied it to the non-
monotonic case. As one of the tractable theories for the conventional model with asynchronous
dynamics, Coolen and Sherrington [10,11] have proposed a two-parameter dynamical replica
theory (2-DRT hereafter; it is also sometimes called the Coolen–Sherrington (CS) theory). Of
course it is an approximate theory, as confirmed, for example, by Ozeki and Nishimori [12]
and Tanaka and Osawa [13]; nevertheless, it describes retrieval dynamics of the conventional
model reasonably well. As Ozeki and Nishimori [12] have mentioned, formulation of 2-DRT
does not depend on the functional form of the output function f , and therefore it is possible
to apply it to the non-monotonic model. Thus, the following question naturally arises: How
well does 2-DRT describe retrieval dynamics of the non-monotonic model? In this paper, we
address this problem, with emphasis placed on the storage capacity, size of basins of attraction
and the super-retrieval states.

2. Model

Let us consider a model with N units. Each unit has a binary variable si ∈ {−1, 1},
i = 1, . . . , N , and s = [s1, . . . , sN ] ∈ {−1, 1}N represents a microscopic state of the model.
Each unit stochastically and asynchronously updates the value of si based on the current value
of the ‘local field’:

hi(s) =
∑
j �=i

Jij sj (1)

where Jij is a synaptic weight from neuron j to neuron i. The probability of state flip si := −si
is given by the following transition probability:

wi(s) = 1
2 (1 − sif (hi(s))) (2)

wheref : R 	→ [−1, 1] is the output function. Takingf (x) = tanh βx yields the conventional
Hopfield model. In this paper we consider the following non-monotonic function (figure 1):

f (x) =
{

−sgn (x) (|x| � θ)

sgn (x) (|x| < θ).
(3)



Application of 2-DRT to retrieval dynamics of associative memory with non-monotonic neurons 2697

Its functional form is the same as that treated by Nishimori and Opriş [9]. Throughout the
paper, we follow the common timescale convention, which is taken in such a way that the
average number per unit time (frequency) of updates each unit executes is one.

The model memorizes p = αN binary patterns ξµ = [ξµ1 , . . . , ξ
µ

N ] ∈ {−1, 1}N ,
µ = 1, . . . , p, via the Hebb rule,

Jij = 1

N

p∑
µ=1

ξ
µ

i ξ
µ

j (i �= j). (4)

The quantity α ≡ p/N is called the memory rate. We consider the case where the patterns
to be memorized are randomly generated, that is, each ξµi takes the value ±1 with probability
1/2, independently of the others.

For measuring how well the model retrieves a pattern µ, the correlation, or overlap,

mµ(s) = 1

N

N∑
i=1

ξ
µ

i si (5)

is used: |mµ(s)| � 1 holds by definition, and if mµ(s) = 1, then the model is in the state
s = ξµ, and it is regarded as perfectly retrieving the pattern µ. When mµ(s) = −1 the model
is in the state s = −ξµ. The state is called the reversal state, but it can also be regarded as
retrieving the pattern µ due to the symmetry of the model.

We assume that the model is going to retrieve a single pattern, so that mµ(s) are of order
unity for that pattern only (the condensed ansatz), and that pattern µ = 1 is nominated for
retrieval, without loss of generality. Then m ≡ m1(s) can be taken as a macroscopic variable,
or order parameter, describing how well the model retrieves the nominated pattern. If the model
reaches an equilibrium with m �= 0, the model is said to successfully retrieve the pattern, and
such an equilibrium is called a retrieval state. The local field hi(s) is now rewritten as

hi(s) = ξ 1
i [m + zi(s)] − 1

N
si zi(s) ≡ ξ 1

i

p∑
µ>1

ξ
µ

i

1

N

∑
j �=i

ξ
µ

j sj . (6)

The term zi(s) represents the interference in the local field from non-nominated patternsµ > 1,
and is called the ‘noise’ term. Although time evolution of the microscopic state of the model is
stochastic in nature, it is observed that the evolution of the order parameter m in the course of
pattern retrieval can be often seen as being governed by a certain deterministic law. To describe
the retrieval dynamics is one of important problems in this field. Path integral formalism [3]
provides an exact description for the retrieval dynamics, but it requires parametrization with
infinite degrees of freedom and is therefore practically intractable.

3. Two-parameter dynamical replica theory (2-DRT)

2-DRT, proposed by Coolen and Sherrington [10,11], provides a tractable, and yet reasonably
good description of the retrieval dynamics for the conventional model. It uses two parameters,
m and r , as the order parameters, the latter being defined as

r ≡ 1

α

∑
µ>1

(mµ(s))2 (7)

which intuitively represents the degree of the interferential effect of non-nominated patterns
µ > 1 onto the retrieval of pattern 1. 2-DRT derives deterministic flow equations for these
two order parameters. Without any assumptions, one cannot expect that the flow equations for
these two parameters are closed, and thus the time evolution of m and r cannot be completely
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determined by their current values. In the framework of DRT in general, the following two
assumptions are made:

(1) Self-averaging of flow equations with respect to the randomness of the system (randomly
chosen patterns for the case treated in this paper).

(2) Probability equipartitioning within subshells: when values of the order parameters are
given, the probability distribution of the corresponding microscopic state can be regarded
as being uniform over the subshell (the set of microscopic states which have the specified
values of the order parameters), with regard to calculation of the flow equations.

Owing to these closing assumptions, one can derive the deterministic flow equations for m and
r:

dm

dt
=

∫
dz Dm, r [z] f (m + z) − m

1

2

dr

dt
= 1

α

∫
dz Dm, r [z] zf (m + z) + 1 − r

where Dm, r [z] is the distribution of the noise terms. Replica calculation gives, within the
replica-symmetric (RS) ansatz, the RS solution DRS

m, r [z] for the noise distribution, which has
been derived by CS [10, 11] as

DRS
m, r [z] = e−(�+z)2/2αr

2
√

2παr

{
1 −

∫
Dy tanh

[
λy

(
�

ραr

)1/2

+ (� + z)ρ
rAGS

r
+ µ

]}

+
e−(�−z)2/2αr

2
√

2παr

{
1 −

∫
Dy tanh

[
λy

(
�

ραr

)1/2

+ (� − z)ρ
rAGS

r
− µ

]}
(8)

� = ρα(r − rAGS) (9)

rAGS = λ2

ρ2α
(10)

where Dy = (dy/
√

2π)e−y2/2 is the Gaussian measure. The parameters {q, λ, ρ, µ} are to
be determined from m, r , and α using the following saddle-point equations:

r = 1 − ρ(1 − q)2

[1 − ρ(1 − q)]2
λ = ρ

√
αq

1 − ρ(1 − q)

m =
∫

Dy tanh (λy + µ) q =
∫

Dy tanh2(λy + µ).

(11)

It should be noted that the replica calculation of the noise distribution bears no relation
to the dynamics of the model and the choice of the output function f ; it executes averaging
over the (m, r)-subshell with uniform measure, and therefore the calculation is not dynamical
but configurational. This is the reason why, apart from the validity of the two assumptions,
2-DRT can be straightforwardly applied to the non-monotonic model.

The latter of the two above-mentioned assumptions, the equipartitioning assumption, is a
critical one because it has been known that it is not valid for the conventional model [13], as
well as the continuous-valued linear system, or the Langevin spin system [14]. To show this
directly for the conventional model, Tanaka and Osawa [13] have proposed a dynamics, called
(m, r)-annealing. The (m, r)-annealing is defined, on the basis of the solution {ρ, µ} of the
saddle-point equations for given m and r , as the dynamics of the conventional model with the
inverse temperature ρ (that is, it uses f (x) = tanh ρx), but an extra bias is added to the local
field,

hi(s) =
∑
j �=i

Jij sj + bξ 1
i (12)
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Figure 2. Dynamics obtained by simulations withN = 215 (solid curves) and computed by 2-DRT
(dashed curves) for the case with α = 0.2 and θ = 1.4.

where b ≡ µ/ρ − m. It has been shown that the (m, r)-annealing executes Monte Carlo
sampling from a (m, r)-subshell with uniform probability (in the limit N → ∞), hence
realizing the equipartitioning. It is useful in investigating the validity of the equipartitioning
assumption, and will be utilized in this paper.

4. Results

4.1. The time evolution of the order parameters

We first examined whether 2-DRT describes the overall characteristics of the dynamics of the
non-monotonic model. We assume the common convention that initial microscopic states of
the model are given by randomly corrupting the nominated pattern; that is, the initial state s is
set by the probability law Prob[si] = δ(si − ξ 1

i )(1 +m0)/2 + δ(si + ξ 1
i )(1 −m0)/2, so that the

initial overlap m(t = 0) approximately equals to m0 when N is sufficiently large. Following
this initialization procedure, the initial value of r , when N is sufficiently large, approximately
equals 1. We found that 2-DRT does describe the dynamics of the model considerably well, as
shown in figure 2 for the case with α = 0.2 and θ = 1.4. 2-DRT reproduced the trajectories
almost exactly when retrieval succeeded. Noticeable disagreement between simulations and
2-DRT was seen for cases where retrieval failed. The characteristic aspect of the disagreement
is that the trajectories predicted by 2-DRT exhibit, in early stages, overall slowing down against
the corresponding simulations. These observations are essentially the same as those found in
the conventional model [8, 11, 13]. The observed disagreement is due to the failure of the
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Figure 3. Flow vectors (ṁ, ṙ) at t = 1 on the trajectory starting at (m, r) = (0.1, 1) for the
model with α = 0.2, θ = 1.4 and N = 215. Three flow vectors, ones before and after the (m,
r)-annealing, and one computed by 2-DRT, are shown.

equipartitioning assumption of 2-DRT just as in the conventional model, as demonstrated by
the following numerical experiment. The procedure followed in this experiment is as follows:
simulate a model with θ = 1.4 and α = 0.2 by setting its initial condition as (m, r) = (0.1, 1),
stop it at t = 1, and then execute the (m, r)-annealing for 80 time units. The flow vectors
(ṁ, ṙ), evaluated from (1) the model just before executing the (m, r)-annealing, (2) the model
just after it, and (3) 2-DRT, were compared, and the result is summarized in figure 3. This
shows that the flow vectors of the model after the (m, r)-annealing and of 2-DRT are almost the
same, whereas the flow vector before the (m, r)-annealing is different from these two, which
means that the equipartitioning assumption does not hold in this case.

4.2. Capacity and basins of attraction

In this paper, we define the storage capacity αc as the maximum value of α for which a stable
macroscopic state with nonvanishing m exists. We call an equilibrium macroscopic state with
nonvanishing m the retrieval state. Since the retrieval state may be unstable, the condition for
the existence of a retrieval state will give an overestimate of the true storage capacity. On the
other hand, a stable retrieval state may have a very small basin of attraction, so that we may
fail to find such a retrieval state in numerical experiments even though it is stable.

Shiino and Fukai [2] have analysed equilibrium properties of continuous-valued
continuous-time non-monotonic models using SCSNA. Although we consider the model with
binary variables in this paper rather than ones with continuous values, the equilibrium condition
is shown to be the same as that for the continuous-value continuous-time model owing to the
current choice of the output function f (equation (3)), and thus SCSNA can be applied to the
model treated here. We executed the SCSNA calculation on this model, and figure 4 shows
the result for αe, the maximum of α for which a retrieval state exists, versus θ . When θ → ∞,
αe approaches the well known value 0.138, confirming that SCSNA is consistent with the
Amit–Gutfreund–Sompolinsky (AGS) theory [15]. As θ becomes smaller, αe increases so that
it reaches its maximal value αe = 0.489 at θ ≈ 0.7.

As we have already discussed,αe gives an overestimation of the true storage capacityαc [2].
To evaluate αc itself, we have to take into account the dynamical aspect of the retrieval process.
This discussion leads us to the idea of applying 2-DRT to determine the storage capacity αc, by
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Figure 4. Plot of αe , the maximum of α for which a retrieval state
exists (solid curve), and critical capacity α0 (dashed curve), under
which super-retrieval occurs, against θ , evaluated by SCSNA
calculation. The thin dashed line shows α = θ , which limits
the capacity in the small-θ region.
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Figure 5. Plot of storage capacity αc against θ ,
evaluated by simulation (solid curve) and by 2-DRT
trajectory tracking (dashed curve). Plots of αe and
α0 evaluated by SCSNA (shown in figure 4) are also
shown for comparison.

observing whether or not the trajectories from arbitrary initial conditions approach a retrieval
state.

Two points have to be mentioned here. First, although 2-DRT becomes exact at equilibrium
for the conventional model [10, 11], it is no longer so for the non-monotonic model, which
means that 2-DRT may not reproduce the storage capacity. Second, since we assume the
initialization procedure described above, only the retrieval states which can be reached from
the initial conditions with r = 1 are to be observed in the simulations. To correspond with
this experimental setup, we estimated the storage capacity αc by tracking 2-DRT trajectories
from initial conditions with r = 1. The storage capacity estimated by the simulations and
by the 2-DRT trajectory tracking may be therefore an underestimate against the true storage
capacity, because there might be stable retrieval states unreachable from any initial condition
with r = 1 (see section 4.3).

Figure 5 shows the estimated storage capacity αc by 2-DRT trajectory tracking and by
simulations. It can be seen that 2-DRT trajectory tracking reproduces well the storage capacity
obtained by the simulations for the whole range of θ . Comparing it with figure 4 reveals that,
while the agreement is good when θ is large, the discrepancy becomes apparent as θ becomes
less than about 1.5, showing that the storage capacity estimated by 2-DRT is considerably
smaller than that estimated by SCSNA. It may be partly explained by the overestimation of
SCSNA described above.

One of the main advantages of dynamical theory is that it allows us to evaluate basins of
attraction, because they are essentially of dynamical nature. We used 2-DRT to evaluate the
basin of attraction of the retrieval states. Since we adopt the above-mentioned initialization
convention, we consider the basin of attraction as being represented in terms of m only, that
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Figure 6. Plot of critical initial overlap mc against α, evaluated by 2-DRT (solid curve) and by
simulation (markers) for θ = +∞, 1.4 and 0.7.

is, we regard a value of m0 as belonging to the basin of attraction of the retrieval state if the
trajectory starting at the state (m, r) = (m0, 1) approaches the retrieval state. Evaluating the
basin of attraction defines the critical initial overlap mc, which means that initial states (m0, 1)
with m0 � mc yield successful retrieval. Figures 6 and 7 show the critical initial overlap mc

and the values of m of the retrieval state, respectively, evaluated by 2-DRT and by simulations.
It is readily seen that enlargement of the basin of attraction occurs as θ becomes small, and
that 2-DRT captures this phenomenon reasonably well.

4.3. Super-retrieval states

As a result of SCSNA analysis on non-monotonic models, Shiino and Fukai [2] have shown
that there is a phase where equilibrium states corresponding to ‘perfect’ retrieval exist. Such
states are called the super-retrieval states, whose existence is one of unique features of the
non-monotonic models. Here, ‘perfect’ means that the correlation of the sign of the local
field hi(s) (not of s) with the nominated pattern ξ1 is exactly equal to ±1. The correlation
defined as above is called the tolerance overlap [2]. The critical capacity α0, below which the
super-retrieval occurs, can be evaluated numerically by SCSNA, and is also shown in figure 4.

An explanation, given by Shiino and Fukai [2], for the possible existence of such states is
briefly as follows: for such states rAGS → +0 holds, which has been confirmed by numerically
solving relevant self-consistent equations. Since variance of the noise term (without the
‘systematic’ term, %Y , in their terminology [2]) is given by αrAGS in SCSNA, it implies
that the effect of the noise completely vanishes in the states, which enables the super-retrieval.
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Figure 9. Noise distributionD[z] at the equilibrium state
((m, r) = (0.398, 0.004 40)) achieved by the simulation
with θ = 0.4, α = 0.05, N = 215, and initial condition
m0 = 0.9 (solid curve), and the one computed by 2-DRT
for the same values of (m, r) (dashed curve).

Especially interesting is whether or not 2-DRT provides an appropriate description of
dynamics which is bound for super-retrieval states. To see this, we examined the case where
θ = 0.4 and α = 0.05, which, according to SCSNA analysis, is expected to have the super-
retrieval states. Figure 8 shows the time evolution of r evaluated by simulation and by 2-
DRT, with initial condition m0 = 0.9. Again, 2-DRT reproduced the simulation result fairly
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Figure 10. Plot of 1/r versus ln t for θ = 0.4, α = 0.05, and with initial
condition m0 = 0.9, evaluated by 2-DRT.

well. For the simulation, state transition ended (confirmed numerically) at t ≈ 30, where
(m, r) = (0.398, 0.004 40). The tolerance overlap was evaluated to be exactly equal to 1 at
this state, indicating that this is the super-retrieval state. Figure 9 shows the noise distribution
D[z] at the equilibrium state achieved by the simulation, and the one computed by 2-DRT for
the same values of (m, r). They are in good agreement, suggesting that 2-DRT can successfully
predict the trajectories even in the case of super-retrieval, provided that the system size N is
sufficiently large. As for 2-DRT, the value of r continued to decrease at t ≈ 105 (we stopped
computation of 2-DRT at t = 105 because rounding errors became profound beyond this
point), where (m, r) = (0.399, 0.001 59). We observed numerically that t-dependence of the
decrease of r can be expressed, to a good approximation, as r(t) ∝ 1/ ln t (figure 10), which
strongly supports the conjecture that the trajectory obtained by 2-DRT certainly approaches
r = 0. As can be seen by equation (8), variance of the noise term is, roughly speaking, given
by αr in 2-DRT. Then, if the super-retrieval states are described appropriately by 2-DRT, they
should correspond to the states with r = +0. In the following we therefore investigate the
solutions of the saddle-point equations (11) when r = +0.

By formally taking the limit r → +0, the saddle-point equations (11) are reduced to the
following equations:

ρ = −∞ (13)

m =
∫

Dy tanh (λy + µ) (14)

q =
∫

Dy tanh2(λy + µ) (15)

λ = −
√
αq

1 − q
(16)

and, correspondingly, the RS noise distribution DRS
m, r=+0[z] (8) becomes

DRS
m, r=+0[z] = 1 − m

2
δ(z − α) +

1 + m

2
δ(z + α). (17)

The condition that the macroscopic state (m, r = +0) is an equilibrium state, that is,
(ṁ, ṙ) = (0, 0) holds, is thus given by

f (m ± α) = ∓1. (18)

For the current choice of the function f (equation (3)), this condition is satisfied when
0 < m − α < θ < m + α, or equivalently, max {θ − α, α} < m < min {θ + α, 1}. This
is consistent with the observation from the simulations that m tends to approach θ when the
super-retrieval occurs.
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One may notice that the RS noise distributionDRS
m, r=0[z] (equation (8)), whose components

are delta functions and hence have zero width, seems incompatible with the noise distribution
at the super-retrieval state observed in the simulation (figure 9), which has two components
with finite width. However, this is ascribed to the finite-size effect, as discussed later.

The applicability of 2-DRT depends not only on the two assumptions made at the beginning
but also on the two following points: the first one concerns the so-called freezing line, which
defines the points in the (m, r) plane where the number of microscopic states within the (m, r)-
subshell changes from an exponentially large number to an exponentially small number in terms
of N . The second one concerns the so-called de Almeida–Thouless (AT) line [18], at which
the replica-symmetry-breaking (RSB) occurs and thus the RS ansatz becomes no longer valid.
These two points should be addressed in order to assess the validity of taking the formal limit
r → +0 in the 2-DRT framework.

When N is large, the number of microscopic states within (m, r)-subshell is scaled as
eNν(m, r). The exponent ν(m, r) is given, under the RS ansatz, by the following formula [11]:

ν(m, r) =
∫

Dy ln cosh [λy + µ] − µm − α

2

[
ln[1 − ρ(1 − q)]

+
ρ(1 − q)(1 − ρ + 3qρ)

[1 − ρ(1 − q)]2

]
+ ln 2. (19)

The condition ν(m, r) = 0 defines the freezing line. The number of microscopic states within
the subshell is exponentially large, and therefore taking averages over the subshell is expected
to have the proper meaning, as long as ν(m, r) is positive. For r = 1 and |m| < 1, ν(m, r)
becomes

ν(m, r = 1) = −1

2

[
(1 + m) ln

1 + m

2
+ (1 − m) ln

1 − m

2

]
> 0 (20)

so that the number of microscopic states is indeed exponentially large. In the limit r → +0,
however, ν(m, r) goes to −∞, implying that r = 0 is outside the freezing line. This means
that there are so few microscopic states near r = 0, which may in part explain the observation
from the simulations that the trajectories approaching r = 0 reach equilibrium before actually
arriving at r = 0. That r = 0 is outside the freezing line also means that the argument with
the formal limit r → +0 eventually loses its proper meaning, because the relevant subshell
average is over an exponentially small number of microscopic states. Numerical evaluation
reveals, however, that the freezing line for r < 1 lies very close to r = 0 (figure 11). This
shows that the number of microscopic states, having vanishing—not exactly zero—overlaps
with non-nominated patterns ξµ, µ > 1, while keeping the overlap with the nominated pattern
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Figure 12. The region where the super-retrieval solution (m, r) = (θ, 0) is stable, evaluated
by 2-DRT local stability analysis (shaded region), by tracking simulation trajectories (the region
below the thick solid curve) and by tracking 2-DRT trajectories (the region below the thick dashed
curve). The region where super-retrieval state exists, evaluated by SCSNA (see figure 4) is also
shown (dotted) for comparison.

ξ 1 high, is indeed large. (This is nontrivial because we are working with the discrete state space
{−1, 1}N .) Moreover, the saddle-point solution of the order parameters changes smoothly as r
tends to +0: let µ0, q0 be the asymptotic values of the saddle-point solution µ, q, respectively.
Then the asymptotic form of the saddle-point solution as r → +0 is given by

ρ = −r−1 + O(1)

λ = −
√
αq0

1 − q0
+ O(r)

µ = µ0 + O(r)

q = q0 + O(r)

� = −α + O(r)

(21)

which shows that the solution exhibits any anomalous behaviour around r = 0. We can
therefore expect that the argument presented above on the formal limit r → +0 captures well
qualitative aspects of the equilibrium states achieved by the simulations.

The AT line is determined by examining the stability of the RS solution. Assuming that
RSB is caused by destabilization of the so-called ‘replicon’ modes [16–18] for the case r < 1
just as it has been assumed for the case r � 1 [11], the AT line turns out to be given by the
same formula as given in [11] for r � 1:

α = ρ2(α + �)2
∫

Dy

cosh4(λy + µ)
. (22)

The RS solution is valid if the right-hand side of equation (22) is less than α. We confirmed
that, for the case whereα = 0.05, the AT line lies in the regionm > 0.890 for r < 1 (figure 11),
which implies that the super-retrieval observed in the simulations was irrelevant to RSB.

We have performed local stability analysis of the 2-DRT stationary solutions r = 0,
max {θ − α, α} < m < min {θ + α, 1} corresponding to the super-retrieval state. The result
of the analysis states that, among the super-retrieval solutions, (m, r) = (θ, 0) is the only
attractor when 2α < θ < 1, although it becomes unstable when α < θ < min {2α, 1}. For the
details of the local stability analysis, see the appendix. In the simulations, however, it is not for
all (θ, α) values satisfying 2α < θ < 1 that the super-retrieval was observed. Figure 12 shows
the region where the local stability analysis of the 2-DRT predicts the stable super-retrieval
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Figure 13. Trajectories predicted by 2-DRT in (m, r) plane
with (θ, α) = (0.4, 0.15).

state, the one where the super-retrieval is observed by simulations (in the sense that tolerance
overlap is numerically evaluated to be 1), and the one where the super-retrieval is predicted
by tracking the 2-DRT trajectories starting at (m, r) = (m0, 1). The second and third regions
are in good agreement with each other. Both are within the first region, the region where the
super-retrieval state is locally stable, as they should be, but apparently they do not coincide
with the first one. The region where the super-retrieval is observed in simulations may be
further affected by the following factors:

• The super-retrieval solution (m, r) = (θ, 0) may not be reachable from the conventional
initial states with r = 1, even though it is an attractor.

• Even if the stable super-retrieval solution (m, r) = (θ, 0) exists, the system may be
equilibrated at a state with a nonzero r value, where tolerance overlap is exactly 1, due to
the finite-size effect.

• The super-retrieval solution (m, r) = (θ, 0)may be at the outside of the RS region, where
the stationarity and local stability arguments, both based on the RS ansatz, are no longer
valid.

A demonstration regarding the first factor is shown in figure 13. For the condition
(θ, α) = (0.4, 0.15) (marked by a cross in figure 12), for example, the super-retrieval
state is not observed by following time evolution by either numerical simulation or 2-DRT.
Nevertheless, 2-DRT predicts that under this condition the stable super-retrieval state exists
at (m, r) = (0.4, 0). As shown in the figure, 2-DRT trajectory tracking shows that in this
condition the super-retrieval state is indeed stable, but it is not reachable from the initial states
with r = 1. Therefore, the difference in the upper-α boundary of the regions obtained by
2-DRT local stability analysis and by trajectory tracking is explained by the first factor.

As for the finite-size effect, we have already shown a simulation result in which the system
is equilibrated and the tolerance overlap is exactly 1, while r = 0.004 40 > 0 (figure 8) and
the two components of the noise distribution remain of finite width (figure 9). Theoretically,
the width of the components should go down to 0 in order for the system to arrive at the stable
super-retrieval state, because the tolerance overlap g is given by

g = 1 −
∫ −m

−∞
Dm, r [z] (23)

which equals 1 only when the left tail of the noise distribution Dm, r [z] vanishes, and because
the driving force to decrease r is provided by the tails of the noise distribution, if they exist,
as discussed in the appendix. In the simulations, on the other hand, it may happen that none
of the realizations zi of the noise (there are N realizations of the noise for a system with N

units) falls into the tail regions, even though r is positive and thus the noise distribution has
finite weight at the tails. In such cases, the tolerance overlap will become exactly 1 and time
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Figure 14. The region where, according to 2-DRT, the super-
retrieval solution (m, r) = (θ, 0) is a stationary point and
satisfies the RS ansatz (solid curve) and the super-retrieval
phase evaluated by SCSNA (dashed curve). The right solid
curve corresponds to the AT line.

evolution will stop before r becomes exactly 0. This is the reason why the tolerance overlap can
take the value 1 while the system is equilibrated at a state with nonzero r . We also found that
this finite-size effect made it difficult to determine by simulations the boundary at the large-θ
side of the region where super-retrieval occurs (figure 12): the region where super-retrieval
occurs, evaluated by simulations, extended beyond the theoretical upper bound θ = 1, and the
boundary at the large-θ side was sensitive to N even though N was taken as large as 215 in our
study, indicating that this is indeed the finite-size effect.

Concerning the last factor, we have demonstrated that the super-retrieval state attained by
the simulation shown in figure 8 was irrelevant to RSB. However, as shown in figure 11 the AT
line goes across r = 0 at m ∼ 0.89 < 1 for α = 0.05 for example, implying that it is relevant
when θ is closer to 1. In order to investigate the last factor rigorously, 2-DRT analysis taking
RSB into account would be required, which is technically too complicated to be treated in this
paper. Instead, we would like to mention an interesting observation related to the last factor:
there is a rough numerical correspondence between the region where the equilibrium super-
retrieval solution (m, r) = (θ, 0), α < θ < 1, which may not be stable, satisfies the RS ansatz,
and the region where SCSNA predicts super-retrieval to occur, as shown in figure 14. Because
of RSB, as well as the finite-size effect, it is extremely difficult to determine both theoretically
and numerically the boundary at the large-θ side of the region where super-retrieval occurs.

5. Conclusion

We have studied the question of how well 2-DRT describes retrieval dynamics of the non-
monotonic model. Although there is no theoretical justification for 2-DRT to be exact either
for the non-monotonic model, 2-DRT turns out to reproduce the retrieval dynamics quite well,
and it also gives reasonable results for the capacity, basins of attractions and the super-retrieval
states.

Appendix. Local stability analysis of super-retrieval states

We first split the RS noise distribution DRS
m, r [z] into two components, as follows:

DRS
m, r [z] ≡ D−[z] + D+[z] (24)

D±[z] = e−(�±z)2/2αr

2
√

2παr
w±(z) (25)

w±(z) = 1 −
∫

Dy tanh

[
λy

(
�

ραr

)1/2

+ (� ± z)ρ
rAGS

r
± µ

]
. (26)
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Note that w±(z) is ‘slowly varying’ with respect to z, because∣∣∣∣dw±(z)
dz

∣∣∣∣ <
∣∣∣ρ rAGS

r

∣∣∣ (27)

holds and the bound |ρrAGS/r| remains finite even when r → +0. We can thus regard that each
component is basically a Gaussian distribution centred at z = ∓� and width O(

√
αr), and it has

been modulated by a bounded, monotonic, and slowly varying function 0 < w±(z) < 2. From
the asymptotic form of the saddle-point solution as r → +0 (equation (21)), we can expect,
for small r , that the noise components D±[z] become sharply peaked around z = ∓� ≈ ±α.
In the limit r → +0, we have

D±[z] = 1 ∓ m

2
δ(z ∓ α) (28)

so that the condition

max {θ − α, α} < m < min {θ + α, 1} (29)

is obtained for the existence of equilibrium states of the form (m, r) = (m, 0), as discussed
in section 4.3.

In this section we analyse local stability of the equilibrium states (m, r = 0) satisfying
the condition (29). Using the noise components, the time evolution equations are rewritten as

ṁ =
∫ ∞

−∞
dzD−[z]f (m + z) +

∫ ∞

−∞
dzD+[z]f (m + z) − m

1

2
ṙ = 1

α

[∫ ∞

−∞
dzD−[z] zf (m + z) +

∫ ∞

−∞
dzD+[z] zf (m + z)

]
+ 1 − r.

(30)

Because D±[z] are sharply peaked, as the first step of approximation we can assume that
f (m + z) = f (m ∓ �) in the integrals with D±[z]. This assumption becomes exact in the
limit r → +0 and when f (m + z) is continuous around z = ±α, but for finite r it gives an
approximate result and the approximation error comes from the contribution of the tails of
D±[z] where f (m+ z) changes the sign. For explanation purposes we introduce the following
four regions:

I ≡ {z | m + z < −θ}
II ≡ {z | −θ < m + z < 0}
III ≡ {z | 0 < m + z < θ}
IV ≡ {z | θ < m + z}.

(31)

f (m + z) = 1 for z ∈ I or III, and f (m + z) = −1 for z ∈ II or IV. The equilibrium states
which we are interested in correspond to the case where the peak of D+[z] is in the region IV
and that of D−[z] in the region III. In this case the time evolution equations are approximated
to be

ṁ ≈
∫ ∞

−∞
dzD−[z] −

∫ ∞

−∞
dzD+[z] − m

1

2
ṙ ≈ 1

α

[∫ ∞

−∞
dzD−[z] z −

∫ ∞

−∞
dzD+[z] z

]
+ 1 − r.

(32)

However, direct calculation shows that the right-hand sides of these equations exactly equal to 0.
This fact indicates that the time evolution near r = 0 should be governed by the contribution
of the tails.

The principal contribution comes from the largest one of the following three quantities:
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(1) Contribution of the tail of D+[z] in the region III:

I1 = 2
∫

III
dzD+[z] a(z) ≈ 2

∫ z0

−∞
dzD+[z] a(z) (33)

(2) Contribution of the tail of D−[z] in the region IV:

I2 = −2
∫

IV
dzD−[z] a(z) = −2

∫ ∞

z0

dzD−[z] a(z) (34)

(3) Contribution of the tail of D−[z] in the region II:

I3 = −2
∫

II
dzD−[z] a(z) ≈ −2

∫ −m

−∞
dzD−[z] a(z) (35)

where z0 ≡ θ − m, and a(z) = 1 or z, depending on which of ṁ and ṙ we are considering.
We approximate each contribution by extending the integral region to ∞ or −∞. In fact this
approximation does not affect the final result in the r → +0 limit because it changes each
quantity by a vanishingly small amount.

First let us consider the contribution to ṁ. Evaluation for I1 yields

I1 ≈ 2
∫ z0

−∞
dzD+[z]

=
∫ z0

−∞
dz

e−(�+z)2/2αr

√
2παr

w+(z)

≈
∫ z0

−∞
dz

e−(�+z)2/2αr

√
2παr

w+(z0)

≈ 1√
2π

exp

[
− (z0 + �)2

2αr
− ln

z0 + �√
αr

+ lnw+(z0)

]
. (36)

Similarly, for I2 and I3, we have

I2 ≈ − 1√
2π

exp

[
− (z0 − �)2

2αr
− ln

z0 − �√
αr

+ lnw−(z0)

]
(37)

I3 ≈ − 1√
2π

exp

[
− (−m − �)2

2αr
− ln

−m − �√
αr

+ lnw−(−m)

]
(38)

respectively. In the r → +0 limit, the dominant contribution comes from the first term of
the exponent for each case, so that comparison of the term is sufficient to determine which
of I1, I2 and I3 has the largest contribution to ṁ. The result of the comparison for small r is
summarized as follows:

• When −2� < θ , the largest contribution comes from I1 or I2. If m < θ , I1 is the largest
and ṁ > 0. Otherwise, I2 is the largest and ṁ < 0.

• When −2� > θ , the largest contribution comes from I2 or I3. Since both I2 and I3 have
negative contribution, ṁ < 0.

From this result, we can conclude that the stable super-retrieval state, if it exists, should be
(m, r) = (θ, 0), and that 2α < θ < 1 is a necessary condition for the existence of the stable
super-retrieval state.

Let us now take a closer look at the flow near the state (m, r) = (θ, 0). We let
ε ≡ −z0 = m − θ , and consider time evolution of the two small quantities, ε and r . In
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the following arguments we assume that −2� < θ holds, so that the principal contribution
comes from I1 or I2, but not from I3. Under this assumption, we have

ε̇ ≈
√

2αr

π
e−(�2+ε2)/2αr w̄

(
− 1

�

)[
tanh

�ε

αr
+
δ

w̄

]
cosh

�ε

αr

1

2
ṙ ≈

√
2αr

π
e−(�2+ε2)/2αr w̄

( r

�2

)[(�ε
αr

− δ

w̄

)
tanh

�ε

αr
+

( δ

w̄

�ε

αr
− 1

)]
cosh

�ε

αr

(39)

where

w̄ ≡ 1
2

(
w+(z0) + w−(z0)

)
δ ≡ 1

2

(
w+(z0) − w−(z0)

)
.

(40)

Note that −1 < δ/w̄ < 1 holds.
Assuming that ε/r remains finite, we can readily see that ṙ is smaller in magnitude than ε̇

by a factor r . Then for small enough r the slaving principle applies and ε is expected to relax
toward its equilibrium value much faster than r . This justifies the adiabatic approximation,
and we can regard that the equilibrium condition for ε,

tanh
�ε

αr
+
δ

w̄
= 0 (41)

holds throughout the dynamics. This is indeed consistent with the assumption that ε/r remains
finite. ṙ is then given by

1

2
ṙ ≈ −

√
2αr

π
e−(�2+ε2)/2αr w̄

( r

�2

)[
1 −

( δ

w̄

)2]1/2
< 0. (42)

This shows that the state (m, r) = (θ, 0) is actually a stable point of the dynamics described
by 2-DRT under the condition 2α < θ < 1.
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